Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611221

RESUMEN

This work studies the direct current breakdown characteristics of unfilled epoxy and epoxy nonconductive nanocomposites (SiO2,MgO and Al2O3). It also examines the variation of electrical properties in epoxy nanocomposites. The novel aspect of this study is that the samples of Epoxy nanocomposite were exposed to high voltages of up to six kilo volts for three hours using field electron microscopy under high vacuum conditions (10-5 mbar). The current emitted from these samples was measured at three different intervals of time. In addition, the influence of high voltage on the permittivity, loss factor (tan(δ)), and conductivity of the epoxy nanocomposite was studied. This evaluation was conducted before and after applying the voltage at room temperature, The frequency range extends from 10-2-10-7 Hz using the Novo Control Alpha-A analyzer. Current-voltage characterization was performed through field electron microscopy. The samples were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy and Fourier Transform Infrared Spectroscopy. The unfilled epoxy exhibited structural degradation, resulting in the formation of holes when exposed to high voltages of up to six kilo volts, leading to a reduction in electrical properties. Nevertheless, the addition of nanoparticles shows a significant increase in the operational lifetime of the epoxy nanocomposite. The degree of increase in the lifetime of epoxy composite varied depending on several factors such as the type of NPs introduced and their respective sizes. The epoxy/Al2O3 nanocomposite comparing with epoxy/MgO and epoxy/SiO2 nanocomposite showed elevated resistance to direct current breakdown strength and maintaining its dielectric.

2.
Materials (Basel) ; 17(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541592

RESUMEN

Magnetic thin-film modeling stands as a dynamic nexus of scientific inquiry and technological advancement, poised at the vanguard of materials science exploration. Leveraging a diverse suite of computational methodologies, including Monte Carlo simulations and molecular dynamics, researchers meticulously dissect the intricate interplay governing magnetism and thin-film growth across heterogeneous substrates. Recent strides, notably in multiscale modeling and machine learning paradigms, have engendered a paradigm shift in predictive capabilities, facilitating a nuanced understanding of thin-film dynamics spanning disparate spatiotemporal regimes. This interdisciplinary synergy, complemented by avantgarde experimental modalities such as in situ microscopy, promises a tapestry of transformative advancements in magnetic materials with far-reaching implications across multifaceted domains including magnetic data storage, spintronics, and magnetic sensing technologies. The confluence of computational modeling and experimental validation heralds a new era of scientific rigor, affording unparalleled insights into the real-time dynamics of magnetic films and bolstering the fidelity of predictive models. As researchers chart an ambitiously uncharted trajectory, the burgeoning realm of magnetic thin-film modeling burgeons with promise, poised to unlock novel paradigms in materials science and engineering. Through this intricate nexus of theoretical elucidation and empirical validation, magnetic thin-film modeling heralds a future replete with innovation, catalyzing a renaissance in technological possibilities across diverse industrial landscapes.

3.
Polymers (Basel) ; 15(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836013

RESUMEN

This paper offers a short overview of epoxy resins, encompassing their diverse characteristics, variants, chemical modifications, curing processes, and intriguing electrical properties. Epoxies, valued for their multifunctional attributes, serve as fundamental materials across industries. In the realm of dielectric strength, epoxy resins play a crucial role in electrical insulation. This paper discusses the mechanisms governing dielectric breakdown, strategies to enhance dielectric strength, and the impact of various fillers and additives on insulation performance. Through an exploration of recent research and advancements, this paper delves into the spectrum of epoxy properties, the array of subspecies and variants, their chemical adaptability, and the intricacies of curing. The examination of electrical resistance and conductivity, with a focus on their frequency-dependent behavior, forms a pivotal aspect of the discussion. By shedding light on these dimensions, this review provides a concise yet holistic understanding of epoxies and their role in shaping modern materials science.

4.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687532

RESUMEN

The rapid growth and evolution of solar panel technology have been driven by continuous advancements in materials science. This review paper provides a comprehensive overview of the diverse range of materials employed in modern solar panels, elucidating their roles, properties, and contributions to overall performance. The discussion encompasses both traditional crystalline silicon-based panels and emerging thin-film technologies. A detailed examination of photovoltaic materials, including monocrystalline and polycrystalline silicon as well as alternative materials such as cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and emerging perovskite solar cells, is presented. Furthermore, the impact of transparent conductive materials, encapsulation polymers, and antireflective coatings on solar panel efficiency and durability is explored. The review delves into the synergistic interplay between material properties, manufacturing processes, and environmental considerations. Through a comprehensive survey of materials utilized in modern solar panels, this paper provides insights into the current state of the field, highlighting avenues for future advancements and sustainable solar energy solutions.

5.
Materials (Basel) ; 16(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110039

RESUMEN

Over recent decades, the scientific community has managed to make great progress in the theoretical investigation and practical characterization of bismuth ferrite thin films. However, there is still much work to be completed in the field of magnetic property analysis. Under a normal operational temperature, the ferroelectric properties of bismuth ferrite could overcome the magnetic properties due to the robustness of ferroelectric alignment. Therefore, investigation of the ferroelectric domain structure is crucial for functionality of any potential devices. This paper reports deposition and analyzation of bismuth ferrite thin films by Piezoresponse Force Microscopy (PFM) and XPS methods, aiming to provide a characterization of deposited thin films. In this paper, thin films of 100 nm thick bismuth ferrite material were prepared by pulsed laser deposition on multilayer substrates Pt/Ti(TiO2)/Si. Our main purpose for the PFM investigation in this paper is to determine which magnetic pattern will be observed on Pt/Ti/Si and Pt/TiO2/Si multilayer substrates under certain deposition parameters by utilizing the PLD method and using samples of a deposited thickness of 100 nm. It was also important to determine how strong the measured piezoelectric response will be, considering parameters mentioned previously. By establishing a clear understanding of how prepared thin films react on various biases, we have provided a foundation for future research involving the formation of piezoelectric grains, thickness-dependent domain wall formations, and the effect of the substrate topology on the magnetic properties of bismuth ferrite films.

6.
Polymers (Basel) ; 15(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36616597

RESUMEN

Creating stimulus-sensitive smart catalysts capable of decomposing organic dyes with high efficiency is a critical task in ecology. Combining the advantages of photoactive piezoelectric nanomaterials and ferroelectric polymers can effectively solve this problem by collecting mechanical vibrations and light energy. Using the electrospinning method, we synthesized hybrid polymer-inorganic nanocomposite fiber membranes based on polyvinylidene fluoride (PVDF) and bismuth ferrite (BFO). The samples were studied by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), total transmittance and diffuse reflectance, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating-sample magnetometer (VSM), and piezopotential measurements. It has been demonstrated that the addition of BFO leads to an increase in the proportion of the polar phase from 86.5% to 96.1% due to the surface ion-dipole interaction. It is shown that the composite exhibits anisotropy of magnetic properties depending on the orientation of the magnetic field. The results of piezo-photocatalytic experiments showed that under the combined action of ultrasonic treatment and irradiation with both visible and UV light, the reaction rate increased in comparison with photolysis, sonolysis, and piezocatalysis. Moreover, for PVDF/BFO, which does not exhibit photocatalytic activity, under the combined action of light and ultrasound, the reaction rate increases by about 3× under UV irradiation and by about 6× under visible light irradiation. This behavior is explained by the piezoelectric potential and the narrowing of the band gap of the composite due to mechanical stress caused by the ultrasound.

7.
Materials (Basel) ; 15(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36556529

RESUMEN

This paper will provide a brief overview of the unique multiferroic material Bismuth ferrite (BFO). Considering that Bismuth ferrite is a unique material which possesses both ferroelectric and magnetic properties at room temperature, the uniqueness of Bismuth ferrite material will be discussed. Fundamental properties of the material including electrical and ferromagnetic properties also will be mentioned in this paper. Electrical properties include characterization of basic parameters considering the electrical resistivity and leakage current. Ferromagnetic properties involve the description of magnetic hysteresis characterization. Bismuth ferrite can be fabricated in a different form. The common forms will be mentioned and include powder, thin films and nanostructures. The most popular method of producing thin films based on BFO materials will be described and compared. Finally, the perspectives and potential applications of the material will be highlighted.

8.
Materials (Basel) ; 15(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36013769

RESUMEN

Coatings are now frequently used on cutting tool inserts in the metal production sector due to their better wear resistance and heat barrier effect. Protective hard coatings with a thickness of a few micrometers are created on cutting tools using physical or chemical vapor deposition (PVD, CVD) to increase their application performance. Different coating materials are utilized for a wide range of cutting applications, generally in bi-or multilayer stacks, and typically belong to the material classes of nitrides, carbides, carbonitrides, borides, boronitrides, or oxides. The current study examines typical hard coatings deposited by PVD and CVD in the corresponding material classes. The present state of research is reviewed, and pioneering work on this subject as well as recent results leading to the construction of complete "synthesis-structure-property-application performance" correlations of the different coatings are examined. When compared to uncoated tools, tool coatings prevent direct contact between the workpiece and the tool substrate, altering cutting temperature and machining performance. The purpose of this paper is to examine the effect of cutting-zone temperatures on multilayer coating characteristics during the metal-cutting process. Simplified summary and comparisons of various coating types on cutting tools based on distinct deposition procedures. Furthermore, existing and prospective issues for the hard coating community are discussed.

9.
Polymers (Basel) ; 13(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34372042

RESUMEN

The method of inclusion of various additives into a polymer depends highly on the material in question and the desired effect. In the case of this paper, nitride salts were introduced into polyvinylidene fluoride fibers prepared by electrospinning. The resulting changes in the structural, chemical and electrical properties of the samples were observed and compared using SEM-EDX, DSC, XPS, FTIR, Raman spectroscopy and electrical measurements. The observed results displayed a grouping of parameters by electronegativity and possibly the molecular mass of the additive salts. We virtually demonstrated elimination of the presence of the γ-phase by addition of Mg(NO3)2, Ca(NO3)2, and Zn(NO3)2 salts. The trend of electrical properties to follow the electronegativity of the nitrate salt cation is demonstrated. The performed measurements of nitrate salt inclusions into PVDF offer a new insight into effects of previously unstudied structures of PVDF composites, opening new potential possibilities of crystalline phase control of the composite and use in further research and component design.

10.
Materials (Basel) ; 14(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804184

RESUMEN

Modern material science often makes use of polyvinylidene fluoride thin films because of various properties, like a high thermal and chemical stability, or a ferroelectric, pyroelectric and piezoelectric activity. Fibers of this polymer material are, on the other hand, much less explored due to various issues presented by the fibrous form. By introducing carbon nanotubes via electrospinning, it is possible to affect the chemical and electrical properties of the resulting composite. In the case of this paper, the focus was on the further improvement of interesting polyvinylidene fluoride properties by incorporating carbon nanotubes, such as changing the concentration of crystalline phases and the resulting increase of the dielectric constant and conductivity. These changes in properties have been explored by several methods that focused on a structural, chemical and electrical point of view. The resulting obtained data have been documented to create a basis for further research and to increase the overall understanding of the properties and usability of polyvinylidene fluoride fiber composites.

11.
Sci Rep ; 10(1): 21140, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273700

RESUMEN

The experimental study deals with the investigation of the effect of diverse crystallinity of imidazolium ionic-liquid-based SPE on conductivity and current fluctuations. The experimental study was carried out on samples consisting of [EMIM][TFSI] as ionic liquid, PVDF as a polymer matrix and NMP as a solvent. After the deposition, the particular sample was kept at an appropriate temperature for a specific time in order to achieve different crystalline forms of the polymer in the solvent, since the solvent evaporation rate controls crystallization. The ac/dc conductivities of SPEs were investigated across a range of temperatures using broadband dielectric spectroscopy in terms of electrical conductivity. In SPE samples of the higher solvent evaporation rate, the real parts of conductivity spectra exhibit a sharper transition during sample cooling and an increase of overall conductivity, which is implied by a growing fraction of the amorphous phase in the polymer matrix in which the ionic liquid is immobilized. The conductivity master curves illustrate that the changing of SPEs morphology is reflected in the low frequency regions governed by the electrode polarization effect. The dc conductivity of SPEs exhibits Vogel-Fulcher-Tammann temperature dependence and increases with the intensity of thermal treatment. Spectral densities of current fluctuations showed that flicker noise, thermal noise and shot noise seems to be major noise sources in all samples. The increase of electrolyte conductivity causes a decrease in bulk resistance and partially a decrease in charge transfer resistance, while also resulting in an increase in shot noise. However, the change of electrode material results in a more significant change of spectral density of current fluctuations than the modification of the preparation condition of the solid polymer electrolyte. Thus, the contact noise is considered to contribute to overall current fluctuations across the samples.

12.
Sensors (Basel) ; 20(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255719

RESUMEN

Bismuth ferrite nanoparticles with an average particle diameter of 45 nm and spatial symmetry R3c were obtained by combustion of organic nitrate precursors. BiFeO3-silicone nanocomposites with various concentrations of nanoparticles were obtained by mixing with a solution of M10 silicone. Models of piezoelectric generators were made by applying nanocomposites on a glass substrate and using aluminum foil as contacts. The thickness of the layers was about 230 µm. There was a proportional relationship between the different concentrations of nanoparticles and the detected potential. The output voltages were 0.028, 0.055, and 0.17 V with mass loads of 10, 30, and 50 mass%, respectively.

13.
Microsc Res Tech ; 83(2): 196-201, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31713943

RESUMEN

Modern day pencil lead is a material of many possibilities. Manufacture process is fast, easy, and well established, yet the full potential of its use still remains to be uncovered. Graphite content ratio to binding clays determines basic properties of the lead like its toughness and color, but more interesting qualities like conductivity and reactivity as well. Properly employed electrochemical etching with a bubble membrane creates sharp and smooth graphite tips, which can be, given enough graphite content, used as probes in several measurement techniques. Observing and adjusting the tip creation process and the results for use in further research are the objectives of this paper.

14.
Microsc Res Tech ; 82(12): 2007-2013, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31441987

RESUMEN

Butterfly wings have complex structure lending it several interesting properties. Coloration of the wing is one of the first things to encounter and the overall visual effect is in fact influenced by several factors. Chemical pigments set the base color of the wing, topographical structures on the wing scales cause color shift by interference and their arrangement into diffraction grating causes iridescence. The thin film interference can be attributed to microscopic ridges covering wing scales. Observation and calculation of the color shift on wings of Euploea mulciber species using Fourier transform of images obtained by atomic force microscopy is the focus of this article.


Asunto(s)
Mariposas Diurnas/fisiología , Pigmentación/fisiología , Alas de Animales/ultraestructura , Animales , Mariposas Diurnas/ultraestructura , Análisis de Fourier , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...